Permafrost in Rock Walls

Paolo Pogliotti

Environmental Protection Agency of Valle d'Aosta - Italy

Losanne(CH), December 18, 2012 Faculté des géosciences et de l'environnement

1 INTRO

• Permafrost degradation and rock walls instability

2 MONITORING

- Planning
- Surface Temperatures
- Deep Temperatures
- Data-management

3 DATA ANALYSIS

- Surface Temperatures
- Deep Temperatures

MODELING

- Approaches
- Empirical models
- Physical models
- Transient thermal effect and warming scenarios

Permafrost degradation and rock walls instability

INTRODUCTION

Hypothesis: The climate-induced **Permafrost degradation of steep bedrock areas** (changes in the thermal and hydrological regime) CAN **directly affect man-made infrastructure**, cause increased **rockfall activity** or trigger **natural disaster** via complex process chains (e.g. rock-ice avalanches,...)

Permafrost degradation and rock walls instability

Factors: space-time interactions

Climate

Is changed fast during the last decades (since 1850.)

- **Global**: last 10 years ranked in the top 11 hottest
- Europe +1.2°C
- Alps +1.6°C

Time interval: decades!

Rock faces

Has predisposing factors to instability rather constant over decades:

- lithology
- structure
- topography

Permafrost, Glaciers and Ice-faces

- Extremely sensitive to climate change (geoindicators).
 - Fast changes directly affecting the hydrothermal conditions of rock faces, thus their stability.

Time Interval: years!!

Permafrost degradation and rock walls instability

Factors: space-time interactions

Climate

Is changed fast during the last decades (since 1850.)

- **Global**: last 10 years ranked in the top 11 hottest
- Europe +1.2°C
- **Alps** +1.6°C

Time interval: decades!

Rock faces

Has predisposing factors to instability rather constant over decades:

- lithology
- structure
- topography

Permafrost, Glaciers and Ice-faces

- Extremely sensitive to climate change (geoindicators).
 - Fast changes directly affecting the hydrothermal conditions of rock faces, thus their stability.

Time Interval: years!!

- In the next future, the instability can affect areas historically mapped as safety.

Permafrost degradation and rock walls instability

Factors: space-time interactions

Climate

Is changed fast during the last decades (since 1850.)

- Global: last 10 years ranked in the top 11 hottest
- Europe +1.2°C
- Alps +1.6°C

Time interval: decades!

Rock faces

Has predisposing factors to instability rather constant over decades:

- lithology
- structure
- topography

Permafrost, Glaciers and Ice-faces

- Extremely sensitive to climate change (geoindicators).
 - Fast changes directly affecting the hydrothermal conditions of rock faces, thus their stability.

Time Interval: years!!

- In the next future, the instability can affect areas historically mapped as safety.
 - Implications for Natural Hazard mapping and Risk management

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Matterhorn - Cheminée - Aug.2003

What do we know on such interactions?

- Correlation between rockfall activity and warmer decades in the past centuries
- The exceptional rockfall activity of 2003 in the Alps
- The frequent presence of perennial/massive ice in the failure surfaces

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Matterhorn - Cheminée - Aug.2003

What do we know on such interactions?

- Correlation between rockfall activity and warmer decades in the past centuries
- The exceptional rockfall activity of 2003 in the Alps
- The frequent presence of perennial/massive ice in the failure surfaces

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Matterhorn - Cheminée - Aug.2003

What do we know on such interactions?

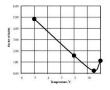
- Correlation between rockfall activity and warmer decades in the past centuries
- The exceptional rockfall activity of 2003 in the Alps
- The frequent presence of perennial/massive ice in the failure surfaces

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Matterhorn - Cheminée - Aug.2003

What do we know on such interactions?

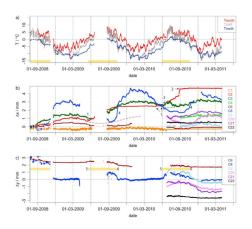

- Correlation between rockfall activity and warmer decades in the past centuries
- The exceptional rockfall activity of 2003 in the Alps
- The frequent presence of perennial/massive ice in the failure surfaces

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Geometry of centrifuge model

What do we know on such interactions?


Evidence from research (Davies et al. [2001])

Ice-filled discontinuities: Factor of safety < 1 at -1.5 $^{\circ}\text{C}$... before melting!

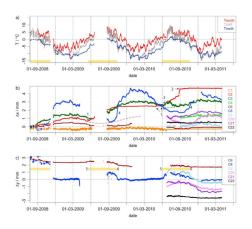
Figure: Predicted change in factor of safety with the temperature of ice in the joint

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Overview of thermal conditions and cleft movements at the Matterhorn Hörnligrat

What do we know on such interactions?


Evidence from research (Hasler et al. [2012])

kinematics of steep bedrock:

- a cold-induced cleft dilatation due to a combined effect of thermomechanical and cryogenic forcing
- a warming-induced cleft movement due to (shear-) strength reduction caused by water percolation and infill-ice melting

Permafrost degradation and rock walls instability

Factors: space-time interactions

Figure: Overview of thermal conditions and cleft movements at the Matterhorn Hörnligrat

What do we know on such interactions?

Evidence from research (Hasler et al. [2012])

kinematics of steep bedrock:

- a cold-induced cleft dilatation due to a combined effect of thermomechanical and cryogenic forcing
- a warming-induced cleft movement due to (shear-) strength reduction caused by water percolation and infill-ice melting

Permafrost degradation and rock walls instability

Factors: space-time interactions

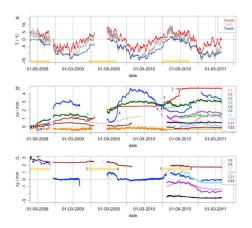


Figure: Overview of thermal conditions and cleft movements at the Matterhorn Hörnligrat

What do we know on such interactions?

Evidence from research (Hasler et al. [2012])

kinematics of steep bedrock:

- a cold-induced cleft dilatation due to a combined effect of thermomechanical and cryogenic forcing
- a warming-induced cleft movement due to (shear-) strength reduction caused by water percolation and infill-ice melting

Permafrost degradation and rock walls instability

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

Permafrost degradation and rock walls instability

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

Permafrost degradation and rock walls instability

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

Permafrost degradation and rock walls instability

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

Permafrost degradation and rock walls instability

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

In practice

Ultimate goal of research activities

Setting-up a collection of operative-tools (maps, guidelines, models,...) addressed to professionals and policy makers for dealing with permafrost related risks in the Alps.

To be done, at alpine level, to achieve the goal

- Share data for building a large homogenized dataset for analysis
- Increase the number of case-studies (monitoring)
- Homogenize data and processing (data analysis)
- Modeling distribution and physical processes (validation, calibration...)

Today we will focus on THERMAL

monitoring, data analysis and modeling

Planning Surface Temperatures Deep Temperatures Data-management

MONITORING

Planning Surface Temperatures Deep Temperatures Data-management

Why... scope of the monitoring

Paolo Pogliotti

Permafrost in Rock Walls

Planning Surface Temperature Deep Temperatures Data-management

What... surface or deep temperatures?

Paolo Pogliotti

Planning Surface Temperature Deep Temperatures Data-management

Where... ele,slp,asp?... scar?...

Paolo Pogliotti

Planning Surface Temperatures Deep Temperatures

Where... ele,slp,asp?... scar?...

Constrains

- Safety of workers
- Accessibility
- Budget

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

- Small and light to handle
- Easy and fast to install
- One or more sensors/depths
- With or without GPRS
- Quite cheap
- 3/4 years batteries

Planning Surface Temperatures Deep Temperatures Data-management

Boreholes on rock walls

- Expensive logistics: drilling company, helico, permissions...
- Limited depth (10-20 m)
- Instruments
- GPRS required
- Super cool data!!

Planning Surface Temperatures Deep Temperatures Data-management

Boreholes on rock walls

- Expensive logistics: drilling company, helico, permissions...
- Limited depth (10-20 m)
- Instruments
- GPRS required
- Super cool data!!

Planning Surface Temperatures Deep Temperatures Data-management

Boreholes on rock walls

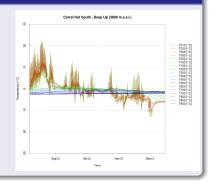
- Expensive logistics: drilling company, helico, permissions...
- Limited depth (10-20 m)
- Instruments
- GPRS required
- Super cool data!!

Paolo Pogliotti

Permafrost in Rock Walls

Planning Surface Temperatures Deep Temperatures Data-management

Boreholes on rock walls


- Expensive logistics: drilling company, helico, permissions...
- Limited depth (10-20 m)
- Instruments
- GPRS required
- Super cool data!!

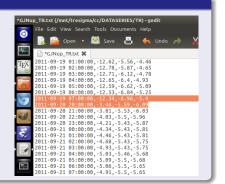
Planning Surface Temperatures Deep Temperatures Data-management

Boreholes on rock walls

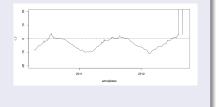
- Expensive logistics: drilling company, helico, permissions...
- Limited depth (10-20 m)
- Instruments
- GPRS required
- Super cool data!!

Planning Surface Temperatures Deep Temperatures Data-management

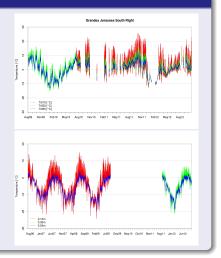
Workflow on raw data


• **Download**: on-field or automatic.

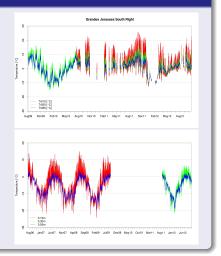
- Check missing records
- Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)


Planning Surface Temperatures Deep Temperatures Data-management

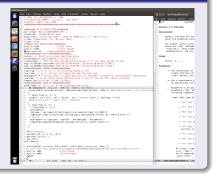
- Download: on-field or automatic.
- Check missing records
- Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)


Planning Surface Temperatures Deep Temperatures Data-management

- **Download**: on-field or automatic.
- Check missing records
- Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)


Planning Surface Temperatures Deep Temperatures Data-management

- **Download**: on-field or automatic.
- Check missing records
- Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)


Planning Surface Temperatures Deep Temperatures Data-management

- **Download**: on-field or automatic.
- Check missing records
- · Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)

Planning Surface Temperatures Deep Temperatures Data-management

- Download: on-field or automatic.
- Check missing records
- · Check no-sense, spikes
- Gap-filling
- Storing (backup)
- Scripting (R, bash, mysql, ...)

Surface Temperatures Deep Temperatures

DATA ANALYSIS

Paolo Pogliotti Permafrost in Rock Walls

Surface Temperatures Deep Temperatures

Single monitoring site

iLog - Grandes Jorasses North face (4100 m a.s.l.)

One Year of Data Permafrost Yes/No

- Permatrost Yes/No (Low accuracy)
- Stupid statistics (MAGST,Min,Max,Freezing-Days,...)

Depth	MART	MaxAbs	MinAbs	dTmax	ZCD	DBZ
0.10	-9.03	13.8	-27.5	19.02	88	333
0.30	-9.04	1.9	-22.75	4.62	16	347
0.55	-9.14	-0.37	-21.56	2.15	0	352

Surface Temperatures Deep Temperatures

Single monitoring site

iLog - Grandes Jorasses North face (4100 m a.s.l.)

One Year of Data Permafrost Yes/No (Low accuracy) Stupid statistics (MAGST,Min,Max,Freezing-

Depth	MART	MaxAbs	MinAbs	dTmax	ZCD	DBZ
0.10	-9.03	13.8	-27.5	19.02	88	333
0.30	-9.04	1.9	-22.75	4.62	16	347
0.55	-9.14	-0.37	-21.56	2.15	0	352

Surface Temperatures Deep Temperatures

Single monitoring site

iLog - Grandes Jorasses North face (4100 m a.s.l.)

One Year of Data Permafrost Yes/No (Low accuracy)

 Stupid statistics (MAGST,Min,Max,Freezing-Days,...)

Depth	MART	MaxAbs	MinAbs	dTmax	ZCD	DBZ
0.10	-9.03	13.8	-27.5	19.02	88	333
0.30	-9.04	1.9	-22.75	4.62	16	347
0.55	-9.14	-0.37	-21.56	2.15	0	352

Surface Temperatures Deep Temperatures

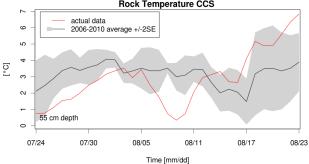
Single monitoring site

iLog - Matterhorn Summit South face (4400 m

a.s.l.)

One Year of Data

- Permafrost Yes/No (Low accuracy)
- Stupid statistics (MAGST,Min,Max,Freezing-Days,...)


Depth	MART	MaxAbs	MinAbs	dTmax	ZCD	DBZ
0.10	-4.16	23.09	-17.4	22.83	85	293
0.30	-4.24	14.06	-13.87	10.03	57	296
0.55	-4.58	7.02	-10.12	3.25	28	315

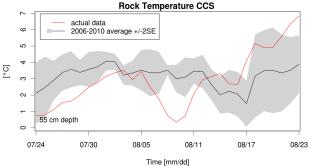
DATA ANALYSIS

Surface Temperatures

Single monitoring site

Many Years of Data

Rock Temperature CCS

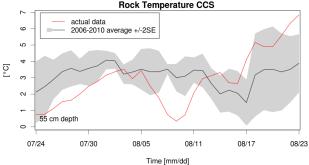

DATA ANALYSIS

Surface Temperatures

Single monitoring site

Many Years of Data

- Permafrost Yes/No (Higher accuracy)
- •


Paolo Pogliotti Permafrost in Rock Walls DATA ANALYSIS

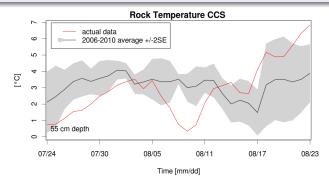
Surface Temperatures

Single monitoring site

Many Years of Data

- Permafrost Yes/No (Higher accuracy)
- Anomalies

Rock Temperature CCS

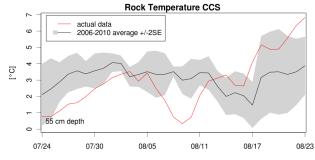

Paolo Pogliotti Permafrost in Rock Walls

Surface Temperatures Deep Temperatures

Single monitoring site

Many Years of Data

- Permafrost Yes/No (Higher accuracy)
- Anomalies
- Trends (...maaany years!)

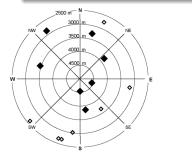

Surface Temperatures Deep Temperatures

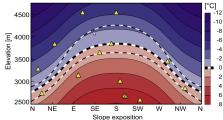
Single monitoring site

Many Years of Data

- Permafrost Yes/No (Higher accuracy)
- Anomalies
- Trends (...maaany years!)

...these are 'only' temporal analysis!.

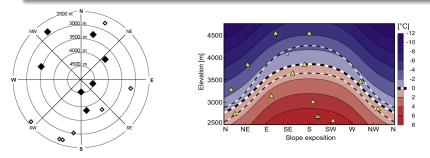

Time [mm/dd] Paolo Pogliotti Permafrost in Rock Walls


Surface Temperatures Deep Temperatures

Many monitoring site

Spatial Variability

Statistics on the variability of measured temperatures with topography.

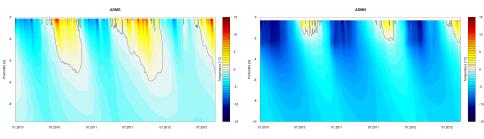

Gruber et al. [2003, 2004a]

Surface Temperatures Deep Temperatures

Many monitoring site

Spatial Variability

Statistics on the variability of measured temperatures with topography.

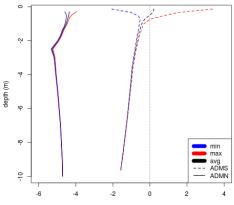

This is the base of the empirical modeling of permafrost distribution over complex topographies (next section.)

Gruber et al. [2003, 2004a]

Surface Temperatures Deep Temperatures

Active Layer Thickness (ALT)

Aiguille du Midì - Boreholes depth 10m. Maximum depth reached by the 0°C isotherm


Contour Plots: Left - south face, Right - north face

data ownership: Laboratoire EDYTEM - Université de Savoie

Surface Temperatures Deep Temperatures

Temperature profiles

Aiguille du Midì - Boreholes depth 10m.

Temperature profiles AdM

temperature °C

MODELING

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Physical (process-oriented) Model

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$

Statistical distribution of Mean Annual Rock Surface Temperatures (MARST) over a DEM

- MARST measured in many points
- Some weather stations around
- A digital elevation model of the area

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$

Statistical distribution of Mean Annual Rock Surface Temperatures (MARST) over a DEM

- MARST measured in many points
- Some weather stations around
- A digital elevation model of the area

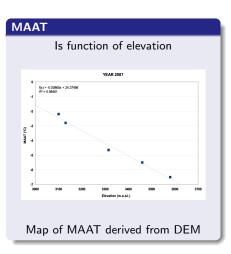
Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$

Statistical distribution of Mean Annual Rock Surface Temperatures (MARST) over a DEM

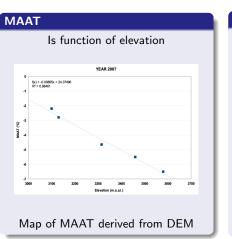
- MARST measured in many points
- Some weather stations around
- A digital elevation model of the area

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

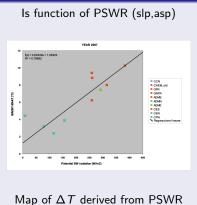

Example: $MARST = MAAT + \Delta T$

Statistical distribution of Mean Annual Rock Surface Temperatures (MARST) over a DEM

- MARST measured in many points
- Some weather stations around
- A digital elevation model of the area

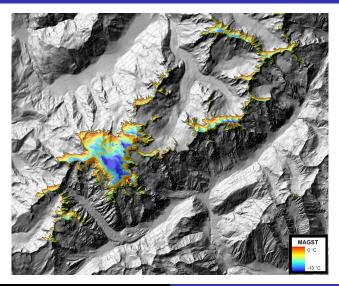

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$



Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$



ΔT

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: $MARST = MAAT + \Delta T$

Paolo Pogliotti Permafrost in Rock Walls

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (*slope* < 37°)

- Rock glaciers inventories (3580 points)
- GLMM predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (*slope* < 37°)

- Rock glaciers inventories (3580 points)
- GLMM predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (*slope* < 37°)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (slope $< 37^{\circ}$)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (slope $< 37^{\circ}$)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

- Rock surface temperatures (57 points)
- LM $MARST = MAAT + \Delta T$
- Expl. var. MAAT, PSWR

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (slope $< 37^{\circ}$)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

- Rock surface temperatures (57 points)
- LM $MARST = MAAT + \Delta T$
- Expl. var. MAAT, PSWR

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (slope $< 37^{\circ}$)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

- Rock surface temperatures (57 points)
- LM $MARST = MAAT + \Delta T$
- Expl. var. MAAT, PSWR

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

Debris covered area (slope $< 37^{\circ}$)

- Rock glaciers inventories (3580 points)
- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

- Rock surface temperatures (57 points)
- LM $MARST = MAAT + \Delta T$
- Expl. var. MAAT, PSWR

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Integrated approach: Debris Model + Rock Model

- **GLMM** predict P(intact/relict)
- Expl. var. MAAT, PSWR, PRC

Steep bedrock ($slope > 37^{\circ}$)

- Rock surface temperatures (57 points)
- LM $MARST = MAAT + \Delta T$
- Expl. var. MAAT, PSWR

Combination based on a land cover map...

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

Example: Alpine Permafrost Map

Boeckli et al. [2012a,b], Cremonese et al. [2011]

Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

Physical Model

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

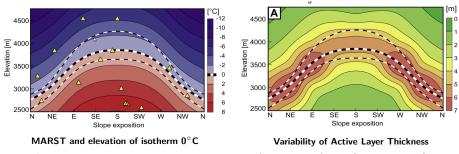
Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

Model selection

- Objectives (mapping, process underst., scenarios, risk ass...)
- Scale of application (regional, local, 1D, 2D, 3D...)
- Availability and Quality of Input data (cartographic bases, meteo-drivers, validation data,...)

Empirical Models

- Mainly used for mapping
- Empirical relations between dipendent (measured) and predictive (e.g. topography) variables.
- Pros: easy, few data, good overview
- Cons: Black-box, steady-state, non-exportable

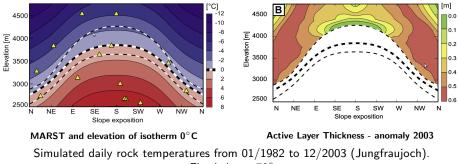

Physical Model

- Used for process-underst. and mapping
- Ensemble of differential equations for solving energy and mass balances
- Pros: more realistic, temporal evolution (processes, scenarios,...)
- Cons: high quality/quantity inputs, computing power, complex.

Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

TEBAL: impact of summer 2003 on permafrost in rock wall

Energy-balance model coupled to an heat conduction scheme. Simulation of RST based on meteorological observations.

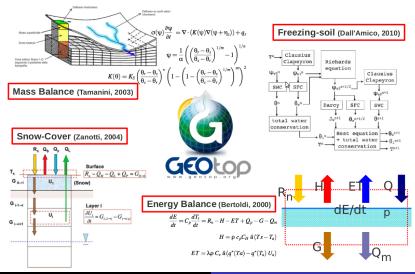

Simulated daily rock temperatures from 01/1982 to 12/2003 (Jungfraujoch). Fixed slope: 70° classes elev:2000-5000 by 500 classes asp: step $45^{\circ}N$

Gruber et al. [2004a,b]

Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

TEBAL: impact of summer 2003 on permafrost in rock wall

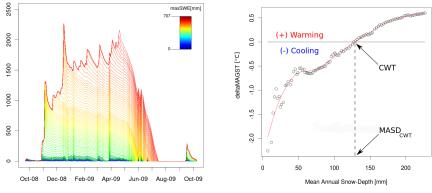
Energy-balance model coupled to an heat conduction scheme. Simulation of RST based on meteorological observations.



Fixed slope: 70° classes elev:2000-5000 by 500 classes asp: step 45°N

Gruber et al. [2004a,b]

Approaches Empirical models Physical models Transient thermal effect and warming scenarios


GEOtop, Rigon et al. [2006]

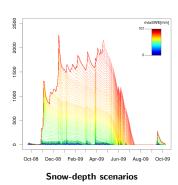
Paolo Pogliotti Permafrost in Rock Walls

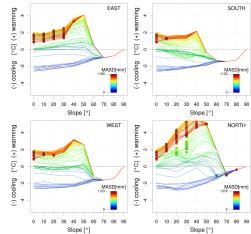
Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

GEOtop: thermal effect of snow cover on MAGST

Snow-depth scenarios

Net effect of MASD on MAGST

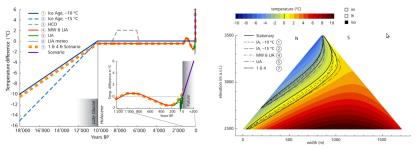

Simulation interval from 15/09/2008 to 15/10/2009 10 loops of model spin-up.


111 Sim. Points = Slp: 0° -90° - Ele:2000-4000 - Asp: step 90°N

Pogliotti [2011]

Approaches Empirical models **Physical models** Transient thermal effect and warming scenarios

GEOtop: thermal effect of snow cover on MAGST

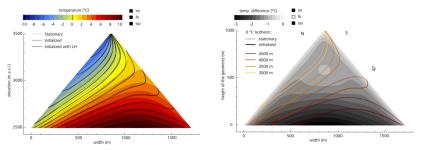

Scenario 2 - Elevation: 4000 [m a.s.l.]

Net effect of MASD on MAGST - Synoptic View

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

TEBAL + COMSOL Multi-Physics

Surf.EB model + 3D heat conduction scheme TEBAL: Corvatsch 1990-1999 (stationary conditions) COMSOL: Initialized with differing temperature histories


Left: surf. temp. histories

Right: Sub. surf. temp. stationary vs. histories. Isotherms $0^\circ C$ and $-3^\circ C.$ Noetzli and Gruber [2009]

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

TEBAL + COMSOL Multi-Physics

Effect of past climatic conditions and topography

Left: Isotherms of a stationary temperature field compared to the init. (7) Right: Temp. difference of the stationary solution to the init. (7) vs. elevation

Isotherm $0^\circ C$

Noetzli and Gruber [2009]

Approaches Empirical models Physical models Transient thermal effect and warming scenarios

TEBAL + COMSOL Multi-Physics

Effect of future warming at differing elevations

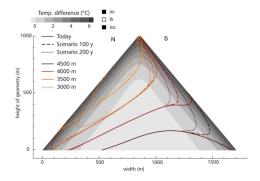


Fig: Temp. difference between current transient temp. field and a 200-year scenario (+3 $^\circ$ C). Isotherm 0 $^\circ$ C

Noetzli and Gruber [2009]

- L. Boeckli, A. Brenning, S. Gruber, and J. Noetzli. A statistical approach to modelling permafrost distribution in the european alps or similar mountain ranges. *The Cryosphere*, 6(1):125–140, 2012a. doi: 10.5194/tc-6-125-2012. URL http://www.the-cryosphere.net/6/125/2012/.
- L. Boeckli, A. Brenning, S. Gruber, and J. Noetzli. Permafrost distribution in the european alps: calculation and evaluation of an index map and summary statistics. *The Cryosphere*, 6(4):807–820, 2012b. doi: 10.5194/tc-6-807-2012. URL http://www.the-cryosphere.net/6/807/2012/.
- E. Cremonese, S. Gruber, M. Phillips, P. Pogliotti, L. Boeckli, J. Noetzli, C. Suter, X. Bodin, A. Crepaz, A. Kellerer-Pirklbauer, K. Lang, S. Letey, V. Mair, U. Morra di Cella, L. Ravanel, C. Scapozza, R. Seppi, and A. Zischg. Brief communication: "an inventory of permafrost evidence for the european alps". *The Cryosphere*, 5(3):651–657, 2011. doi: 10.5194/tc-5-651-2011. URL http://www.the-cryosphere.net/5/651/2011/.
- M. Davies, O. Hamza, and C. Harris. The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. *Permafrost and Periglacial Processes*, 12:137–144, 2001.
- S. Gruber, M. Peter, M. Hoelzle, I. Woodhatch, and W. Haeberli. Surface temperatures in steep alpine rock faces: a strategy for regional-scale measurement and modelling. In *Proceedings of the 8th International Conference on Permafrost*, volume 1, pages 325–330, 2003.

- S. Gruber, M. Hoelzle, and W. Haeberli. Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. *Geophysical Research Letters*, 31(13): L13504, 2004a.
- S. Gruber, M. Hoelzle, and W. Haeberli. Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences. *Permafrost and Periglacial Processes*, 15(3):299–307, 2004b.
- A. Hasler, S. Gruber, and J. Beutel. Kinematics of steep bedrock permafrost. *Journal of Geophysical Research*, 117(F1):F01016, 2012.
- J. Noetzli and S. Gruber. Transient thermal effects in alpine permafrost. The Cryosphere, 3(1):85-99, 2009. doi: 10.5194/tc-3-85-2009. URL http://www.the-cryosphere.net/3/85/2009/.
- P. Pogliotti. Influence of Snow Cover on MAGST over Complex Morphologies in Mountain Permafrost Regions. PhD thesis, 2011.
- R. Rigon, G. Bertoldi, and T. M. Over. GEOtop: a distributed hydrological model with coupled water and energy budgets. *J. Hydromet.*, 7:371–388, 2006.